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One of the most commonly used strategies to reduce hERG (human ether-a-go-go) activity in the drug candidates
is introduction of a carboxylic acid group. During the optimization of PPARS modulators, some of the com-

hERG pounds containing a carboxylic acid were found to inhibit the hERG channel in a patch clamp assay. By mod-
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ifying the basicity of the imidazole core, potent and selective PPARS modulators that do not inhibit hERG
channel were identified. Some of the modulators have excellent pharmacokinetic profiles in mice.

We have recently disclosed a series (“benzamide series”) of PPARS
modulators such as 1la-b that show good selectivity for PPARS over
PPARa and PPARy (Fig. 1)." By replacing the cis amide conformer
found in the x-ray structure of benzamides in the ligand binding domain
of PPARS receptor, a second series (“imidazole series”) of PPARS mod-
ulators was designed (Fig. 1).> The compounds in the imidazole series
such as 2a were found to be more potent and selective modulators of
PPARS receptor. Modifications to the hexanoic acid moiety in both series
significantly improve plasma exposures after oral dosing as compared to
their unsubstituted counterparts.'> We have shown that imidazole MA-
0204 (2c¢), has good pharmacokinetic properties and could be an effec-
tive therapeutic for Duchene Muscular Dystrophy (DMD).?

Medicinal chemists routinely screen lead compounds in the dis-
covery programs for hERG channel binding in order to assess their
potential to cause QT prolongation, which could lead to Torsades de
pointes arrythmias.” Several drugs have been withdrawn from market
or given “black box” labels due to risks related to hERG channel-related
QT prolongation.” Such measures are necessary if the concentration of
drug required for its therapeutic activity approaches the concentration
where the hERG channel is inhibited.®

In order to address this potential safety concern, medicinal chemists
optimize lead compounds for minimal hERG inhibition (typically

ICso > 10 uM), while maintaining or improving activity for the mo-
lecular target (typically ICso or EC5o < 100 nM). Although not an ab-
solute requirement, a vast majority of the hERG active molecules pos-
sess basic amines in their structures. In order to understand the
interaction of molecules with the channel, structural information re-
garding the hERG K-channel is used.”® It is known that hERG channel
binding pocket interactions occur via the hydrophobic central cavity
and two amino acid residues, F656 and Y652.° The interactions of the
hERG inhibitors with the phenylalanine moiety are more hydrophobic
in nature whereas the interactions with the tyrosine moiety are hy-
pothesized to be m-cationic in nature.”'® Therefore, modulating lipo-
philicity of compounds (TPSA, LogD or LogP) or the basicity (pKa) of
nitrogens in the molecules is a commonly used tactic to reduce hERG
activity.*''™'3 A carboxyl group in the structure of a molecule can help
lower the lipophilicity and minimize hydrophobic interactions. There
are several examples in the literature where a carboxylic acid moiety
was introduced into a compound structure to reduce the hERG ac-
tivity.'*'® In certain cases, adding a carboxylic acid moiety can result in
a zwitterionic compound.'® Zwitterionic molecules typically have low
permeability, which can reduce the probability of hERG binding.'*
When lead compounds in the benzamide series, 1a and 1b, were
screened for hERG activity in an automated patch clamp assay, little or
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no activity (< 15% inhibition at 10 uM) was observed.'” Such results
were consistent with our expectations as 1a and 1b lack basic nitrogen
atoms and possess a carboxylic acid. Therefore, when imidazole 2a, was
found to inhibit hERG channel activity (ICso = 5 pM), the result was
unexpected because: (1) the compound contains a carboxylic acid and
(2) even if the imidazole nitrogen is basic, the compound still would
exist in a zwitterionic form, which would lower permeability and thus
not have hERG inhibition.

In order to further understand whether the change in the shape of
the molecule resulting from replacing an amide group in 1a and 1b
with an imidazole (2a) led to the hERG acivity, two thiazoles (3 and 4)
and one pyrazole (5) were synthesized and screened for hERG activity
(Fig. 2). All three compounds lack hERG inhibitory activity (< 15%
inhibition at 10 uM).

Based on these results, it is unlikely that the hERG activity observed
for imidazole 2a results from the three dimensional shape of the mo-
lecule. We assessed whether lipophilicity (as characterized by cLogP) or
TPSA (topological polar surface area) impacts the hERG inhibition."*~*>
Calculated logP for 2a (cLogP = 5.1)'® is lower than those for 3, 4 and
5 (cLogP = 6.1-7.5). TPSA for all four compounds are between 71A°
and 78A°. Thus lipophilicity parameters do not seem to correlate with
the differences in the hERG activity of these compounds. We then ex-
amined if the basicity of the nitrogen atoms in the heterocyclic rings
could explain the difference in the hERG inhibitory potential of these
compounds. In order to test this hypothesis, imidazoles 2b-21 with ei-
ther electron withdrawing or electron donating groups on the imidazole

ring or on the phenyl ring that is directly attached to the imidazole ring
(Table 1) were synthesized and tested for hERG inhibition. The imi-
dazole compounds bearing a methyl group on the imidazole ring, were
synthesized using Scheme 1."* For the synthesis of compounds 2e and
2i-j, the central imidazole rings bearing a trifluoromethyl group were
constructed via 2-(4-substituted-phenyl)-4-(2,2,2-trifluoroacetyl)ox-
azol-5(4H)-one as shown in Scheme 2.'° Compounds with a tri-
fluoromethyl (2f), a chloro (2h) or a cyano (2g) substituent on the
imidazole ring were synthesized via a intermediate 23 or 24 as shown
in Scheme 3.%°.

All the compounds in Table 1 show excellent PPARS activity
(ECso = 0.4-30 nM) and were selctive over other PPARs (data for 2f,
2h and 2i shown in Table 2). The comparison of hERG activity and
cLogP or TPSA for a set of compounds (Table 1) revealed no correlation
between the hERG activity and the physicochemical properties. How-
ever, a clear relationship was observed between nitrogen basicity in the
heteroaromatic ring and the hERG activity with an infliction point
around pKa = 6.0 (Fig. 3).2°0 Decreasing electron-donation to the
phenyl ring that is attached to the imidazole (2c) lowered hERG ac-
tivity. Adding a stronger electron withdrawing (cyano) group at the
same position (2d), reduced hERG inhibition below 50% at 10 uM.
When electron withdrawing groups were placed directly on the imi-
dazole ring (2e —2 1), hERG activity was diminished substantially, for
example, when comparing 2a (hERG ICsy = 5.5 uM) to 2 k and 2 1
(< 10% inhibition of hERG @ 10 uM)or 2c—2e.

The observed differences in the hERG activity of imidazole 2a
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Table 1
pKa, cLogP, TPSA and PPARS activity for compounds 2a-2 1 and 3-5.
R! 70
4 —
RYN 2aR®=H,R?=Me, R*=
= N/
P R? (o]
N < 2
M HO,C __A o R Me
= ) NN 2b R3=H, R? = Me, R* = \
HOZC\/\/\/O R
. 720
2c+j, 21 2a, 2b and 2k _
2k R®=Me, R2=CF3, R*=
Cpd R! R? PPARS ECso nM?* hERG ECso uM” or % Calculated parameters®
inh@10 pM
pKa cLogP TPSA
3 - - 29.7 + 3.4 14 2.8 6.7 72.6
4 - - 2.0 = 0.1 4 1.8 6.1 64.4
5 - - 11.2 = 39 4 2.8 7.5 72.6
2a - - 0.6 = 0.3 5.5 M 6.3 5.1 77.5
2b - - 39 £ 13 51 6.3 5.1 77.5
2c OCF3 Me 04 = 0.1 10 uM 6.3 5.8 73.6
2d CN Me 4.6 15 6.3 4.2 88.1
2e OCF3 CF3 26 £ 1.1 2.0 4.7 5.9 73.6
2f CF3 CF3 29 = 0.2 5.7 4.7 5.6 64.4
2g CF3 CN 2.7 2.5 3.4 4.5 88.1
2h CF3 Cl 1.5 = 0.8 3 4.7 5.7 64.4
2i CN CF3 82 = 26 4 4.7 4.3 88.1
2j Cl CF3 8.0 = 0.4 5.0 4.7 5.4 64.4
2k 2-Furyl CF3 0.7 = 0.2 2.3 4.7 5.2 77.5
21 - - 1.2 *= 0.9 7.0 ND ND ND

@ Transactivation assay>* ECso values are an average of at least two experiments (SEM shown unless single determination). % Activation of compound at each
concentration was calculated considering activity of GW501516 at 10 uM as 100%. The Emax was between 81 and 103% except for compound 3 (Emax = 61%).
Please see reference 3 or WO2016057660 for the details of the assay system.

> See Ref. 17.

¢ For the calculation of cLogP, TPSA and pKa, commercially available ACD software was used.'®*'; ND = Not Determined.
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Scheme 1. Synthesis of Compounds 2a-d. Reagents and conditions: a) Prop-2-yn-1-amine, EDCI.HCI, HOBt, Et;N, DMF, RT, 12 h; b) 2-Methoxybenzyl amine, Zn
(OTf),, toluene, 110 °C, 12 h; c¢) BBrz, DCM, 0 °C-RT, 4 h; d) Ethyl (3R)-6-bromo-3-methylhexanoate or ethyl-6-bromohexanoate, K;CO3, DMF, RT, 12 h; e) LIOH-H,0,
THF, EtOH, H,0, RT, 12 h.
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Scheme 2. Synthesis of Compounds 2e, 2i-j. Reagents and conditions: a) Methyl glycinate hydrochloride, EDCI'HC], HOBt, Et;N, DMF, 12 h, RT; b) LiOH-H,0,
THF, EtOH, H,0, RT, 12 h; c) 2,2,2-Trifluoroacetic anhydride, acetone, 0 °C-RT, 12 h; d) 1,4-Dioxane, H,O, 100 °C, 3 h; e) 2-Methoxyl benzyl amine, AcOH, toluene,

120 °C, 12 h; f) BBr3, DCM, —78 °C-RT; g) Ethyl 6-bromohexanoate, K,CO3, DMF, RT, 12 h; h) In the case where R! =

DME, EtOH, H,0, 90 °C, 12 h; i) LiOH-H,0, THF, EtOH, H,O, RT, 12 h.

versus other heteroaromatic ring containing compounds (3-5) tracks
the differences in the basicity of nitrogens (pKa = 6.3 versus 1.8-2.8).
Compound 2b where the basicity of nitrogen is similar to the nitrogen
in 2a, also has hERG activity (50% inhibition at 10 pM). With the in-
creased basicity of nitrogen in the heteroaromatic ring, it is more likely
that molecule exists in zwitterionic form, which could increase hERG
activity. This may contradict some reports where zwitterionic character
was introduced in the molecules as a strategy to decrease hERG activity
including the well-known example of transforming terfenadine into
zwitterionic fexofenadine with reduced hERG activity.?’ However, a
few zwitterionic compounds that inhibit the hERG channel have been
reported in literature.>”

While reviewing the hERG activity of compounds, it’s important to
consider many points, for example, differences in the assays that were
used measure hERG inhibition. The data shown here was generated
using an automated patch clamp assay. For an accurate measurement
of hERG activity, especially for compounds with low aqueous solu-
bility, a manual patch clamp assay should be performed.>® It is im-
portant to point out that most of the the imidazole compounds de-
scribed in Table 1 exhibit low aqueous solubility (thermodynamic
solubility < 25 pM). Compounds such as 2c¢ could be a viable clinical
candidate because of the large window between the PPARS potency
(ECso = 0.4 nM) and the observed hERG activity (ICso = 10 uM, in
the automated patch clamp assay).® Typically, cardiac safety for
compounds that show hERG activity in the patch clamp assay is

1, furan-2-boronic acid, Pd(PPh3)4, Na,COs5,

assessed in telemetrized animals after oral administration before a
compound enters clinical trials in human. Therefore, it was necessary
to detrmine oral bioavailability of these new compounds in addition
to their profile for activating PPAR isoforms. Potency, selectivity and
the pharmacokinetic (PK) profiles for 2f, 2h and 2i are shown in
Table 2.

All the compounds are potent PPARS modulators (ECso < 10 nM)
and selective over PPARa and PPARY receptors (ECso > 100,000 nM))
in transactivation assays.”* Compounds 2f, 2h and 2i show good oral
bioavailability (F = 70-100%) in mice, have low to moderate clearance
(5-16 mL/min/kg) and reasonable elimination half-lives (3.5-4.1 h).

In summary, we have demonstrated that the hERG activity of the
imidazole PPARS modulators can be attenuated by tuning the basicity
of the nitrogen in the imidazole ring. We effectively decreased the
hERG activity of these potent PPARS modulators while maintaining
favorable selectivity over other PPAR receptors and oral bioavailability.
This study serves as another reminder for medicinal chemists not to be
overconfident that hERG activity can be ameliorated by simply in-
troducing a carboxylic acid moiety in the structure.
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Scheme 3. Synthesis of 2f, 2g and 2h. Reagents and conditions: a) Ethane-1,2-diamine, I,, K»CO3, t-BuOH, 85 °C, 5 h, 85% yield; b) (Diacetoxyiodo)benzene,
K,CO3, DMSO, RT, 12 h, 55% yield; c¢) 2-Methoxybenzyl bromide, NaH (60% dispersion), DMF 0 °C-RT, 4 h, 83% yield; d) NIS, DMF, 80 °C, 12 h, 36% yield; e)
TMSCF3, Ag>COs3, 1,10-phenanthroline, KF, Cul, DMF, 100 °C, 12 h, 59% yield; f) CuCN, Pd(PPh3),4, DMF, microwave, 150 °C, 2 h, 45% yield; g) NCS, CH3CN, 70 °C,
12 h, 40% yield.
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Fig. 3. Correlation between pKa and hERG activity for compounds in Table 1.

The graph was generated in MS Excel. The dotted line represents a trendline
generated by the software.

Table 2

PPAR isoform selectivity and mouse PK data for compounds 2f, 2h and 2i.
Compound 2f 2h 2i
ECso PPARS nM* 29 = 0.2 1.5 = 0.8 8.2 + 2.6
ECso PPARa nM* > 100,000 > 100,000 > 100,000
ECso PPARy nM*" > 100,000 > 100,000 > 100,000
AUC(o.inp) (ng*h/mL) ® 6960 3880 14,740
CL (mL/min/kg) " 5.0 16 2.5
tr/s ()° 5.8 3.5 4.1
%F" 70 100 73

2 Transactivation assay>* ECs, values are an average of at least two experi-
ments (SEM shown unless single determination).

b Exposure data for compounds dosed i.v. at 1 mg/kg and orally at 3 mg/kg
in CD-1 mice.”®
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