

## Mitochondrial Deficiency in Primary Muscle Cells from Mdx Mice Robert Shine, Peter Dwyer, Lyndsay Olson, Jennifer Truong, Matthew Goddeeris, Effie Tozzo, Eric Bell Mitobridge, Inc. Cambridge, MA 02138

### Abstract

Duchenne muscular dystrophy (DMD) is a recessive, fatal X-linked disease that is characterized by progressive skeletal muscle wasting due to a loss of function in dystrophin, a protein that is part of a complex that bridges the cytoskeleton and extracellular matrix. The *mdx* mouse, an animal model for DMD, has a point mutation in the dystrophin gene that results in a loss of function. This study uses primary muscle satellite cell derived myoblasts and myotubes to determine differences in mitochondrial biology between the *mdx* mice and wild type (WT) control mice. Compared to cells isolated from WT mice, *mdx* cells have reductions in mitochondrial bioenergetics. Moreover, *mdx* cells have reduced levels of mitochondria which may partially explain the reduction in bioenergetics. Interestingly, the mitochondrial phenotype is apparent before dystrophin protein is increased during myogenesis.

### Materials and Analysis

WT and *mdx* myoblast isolation and culture: Quadricep and gastrocnemius muscles from a single mouse were pooled and subjected to a mechanical/collagenase digestion. Isolated myoblasts were cultured on Matrigel-coated cultureware in DMEM/F-12 with 10% FBS and 20ng/mL bFGF. Myoblast homogeneity was determined by a co-staining for vimentin and desmin (data not shown).

Myotube Differentiation: Confluent myoblasts were changed to DMEM + 2%FBS + insulinselenium-transferrin for 5 days with the assay performed Day 6.

Mitochondrial Characterization Assays: Procedural information is contained in figure legends. Statistical Analysis: Myoblast data generated from 3 pairs of WT/mdx mice were combined for analysis. Myotube data is from 1 pair of WT/mdx mice. Data was graphed as boxplots and statistical significance determined using GraphPad Prism. Comparisons were performed between WT and mdx in the various experimental conditions.





Figure 2: Myoblasts were treated for 24h with 1mM NMN or 10nM FK866. The myoblasts were then analyzed using the NAD-Glo Assay (Promega). Significant difference between WT and mdx was determined by Mann-Whitney Test; \*\*\*\*p<0.0001, n=44.



myoblast n=40, myotube n=8.



WT and *mdx* determined by unpaired T-test; \*\*\*\*p<0.0001, n=45 (WT)/43 (*mdx*).

n=5 (one pair of mice), citrate synthase n=40.



# mitobridge