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Optimization of benzamide PPARd modulator 1 led to (E)-6-(2-((4-(furan-2-yl)-N-methylbenzamido)
methyl)phenoxy)-4-methylhex-4-enoic acid (18), a potent selective PPARd modulator with significantly
improved exposure in multiple species following oral administration.

� 2017 Elsevier Ltd. All rights reserved.
Three known isoforms of a family of nuclear receptors called
peroxisome proliferator-activated receptors (PPARs) manage the
biosynthesis, oxidation, transport and storage of lipids by govern-
ing gene regulation of mRNAs responsible for proteins that coordi-
nate these activities.1 Modulators of PPARa (fibrates) and PPARc
(thiazolidinones) have been approved as treatments for dyslipi-
demia and diabetes, respectively. PPARd is highly expressed in
liver, skeletal muscle, intestine and adipose tissue.2 Therefore,
selective PPARd modulators could potentially be useful treatments
for metabolic disorders and conditions that would benefit from
muscle regeneration.3,4

Recently, Evans and co-workers have disclosed a chemical ser-
ies of potent selective PPARd modulators, such as compound 1
(Fig. 1)5 which are structurally distinct from the known PPARd
modulator, GW501516.6 Herein, we describe structural modifica-
tions of 1 that were intended to improve exposure following oral
dosing. This effort culminated in the identification of a potent
and selective PPARd modulator, compound 18, which is suitable
for further in vivo characterization.
Compound 1 was found to have high clearance in mice and
served as a starting point for medicinal chemistry.7,8 We modified
regions of its structure based on in vivo metabolism studies and
PPARd receptor data. Through iterative optimization using struc-
ture-activity relationships (SAR), compound 18 was identified; it
displayed significantly improved in vivo exposure (following i.v.
and p.o. dosing) when compared to compound 1. The SAR, pharma-
cokinetic data in multiple species and the protein bound X-ray
structure of 18 are presented.

A general synthesis for the compounds in Table 1 is shown in
Scheme 1.9 Reductive amination of salicylaldehyde with methy-
lamine hydrochloride provided 2-((methylamino)methyl)phenol
2. Suzuki coupling of iodobenzoic acid with furan-2-yl boronic acid
produced 4-(furan-2-yl)benzoic acid 3. The coupling of 2 and 3 led
to amide 4, which after alkylation reaction with a 6-bromohex-
anoic ester or a 6-bromohexenoic ester 5 yielded the correspond-
ing ester 6. Hydrolysis of these esters formed the corresponding
carboxylic acids 7–18.

As shown in Fig. 2, the benzamide series as exemplified by the
structure of compound 1 has been divided into three regions
(‘‘head”, ‘‘core” and ‘‘tail”) for discussion purpose. Oral dosing of
1 in mice revealed that the clearance rate of 1 (195 mL/min/kg)
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Fig. 1. PPARd modulators.

Table 1
SAR for PPARd activity and i.v. exposure data from studies with CD-1 mice.

Cpd ‘‘Head” Region Modification PPARd EC50 (nM)a PPARd EC50 (nM)b t½ (h)c CL (mL/min/kg) AUC (ng*h/mL)

7 13 47 1.7 44 1100

8 230 640 2.8 3 11,400

9 510 >10,000 4.6 1.3 48,400

10 270 417 3.9 0.3 77,700

11 >10,000 >10,000 2.0 1.3 30,800

12d 270 330 ± 10 2.7 1.7 30,100

13d 210 1630 ± 880 3.5 0.6 40,500

14 80 NA 1.9 67 750

15 1850 >10,000 1.2 4 1300

16 690 >10,000 1.6 11 4700

(continued on next page)
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Table 1 (continued)

Cpd ‘‘Head” Region Modification PPARd EC50 (nM)a PPARd EC50 (nM)b t½ (h)c CL (mL/min/kg) AUC (ng*h/mL)

17 40 990 1.7 4 11,800

18 5 37 ± 5 2.3 15 3300

The numbers are n = 1 unless SEM is shown.
a Protein interaction assay.
b Transactivation assay.
c Compounds dosed at 3 mg/kg.
d Relative stereochemistry determined by 1H NMR for racemic compound. NA = Not Available.
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Scheme 1. General synthesis of compounds in Table 1.
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exceeded the rate of mouse hepatic blood flow (90 mL/min/
kg).10,11 Therefore, 1 was unsuitable for in vivo mouse efficacy
studies and further optimization was necessary to identify a better
candidate for pharmacological evaluation. Incubation of 1 with rat
liver microsomes revealed multiple metabolic sites (Fig. 2) that
included oxidation in the aromatic groups in the ‘‘tail” and ‘‘core”
region, N-dealkylation and hydrolysis of the amide bond. Incuba-
tion of other compounds in this series with rat and human hepato-
cytes showed acyl glucoronidation as a route for metabolism.12

Noticing that the trend for clearance rate was similar in rat and
mouse, we screened the new analogs for mouse i.v. exposure.13

Later, plasma exposure following oral and i.v. dosing in mice and
rats were measured for the more interesting compounds.
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Fig. 4. X-ray structure of compound 18 (yellow) bound to LBD of PPARd.
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We initially attempted to decrease clearance by modifying the
furan in the ‘‘tail” region or the phenyl group in the ‘‘core” region
(Fig. 2) by: 1) introducing substituents on the aryl rings and 2)
replacing the furan ring with cyclopropylethynyl, trifluo-
romethylethynyl and 4-trifluoromethoxyphenyl groups. However,
while these analogs maintained PPARd potency (data not shown),
the clearance rate was unaffected. Serendipitously, we discovered
that the N-methyl amide, compound 7, had a decreased clearance
rate compared to the clearance rate for 1 (44 mL/min/kg versus
195 mL/min/kg) after i.v. dosing in mice. Based on this finding,
we kept the N-methyl amide and the 2-furyl group (‘‘tail” region)
constant and systematically modified the ‘‘core” and ‘‘head”
regions. While the ‘‘core” region modifications did not affect the
clearance rate (data not shown), the ‘‘head” region modifications
significantly improved the PK properties of the series. The results
are summarized in Table 1.

The PPARd potency was determined in two assays, a protein
interaction assay14 and a trans-activation assay.15 Typically lower
EC50 numbers (2–8-fold) were obtained in the protein interaction
assay as compared to the trans-activation assay, but the rank order
of activities was similar in both assays. Compounds 19 and 20 con-
tain etheryl and amido linkers, which was associated with loss of
PPARd activity and suggests that there is a lack of tolerance for
polar groups in the ‘‘head” region. Therefore, non-polar groups
Table 2
Potency, selectivity, ADME, DMPK, and PK data for 18.

Assay Results

Human PPARd EC50 = 5 nMa; EC50

Human PPARa EC50 >10,000 nMa;
Human PPARc EC50 >10,000 nMa,b

Direct binding to hPPARd by SPR16 KD = 57 ± 1 nM
Thermodynamic solubility 190 lM
Caco-2 permeability A to B = 4.58E�05;
CYP450 inhibition >10 lM for CYPs 3
Mouse PKc 1 mg/kg IV: t½ = 5

10 mg/kg PO: t½ =
Rat PKd 3 mg/kg IV: t½ = 4

10 mg/kg PO: t½ =
Monkey PKe 3 mg/kg IV: t½ = 1

10 mg/kg PO: t½ =

a Protein interaction assay.
b Transactivation assay.
c Male CD1 mice (n = 3).
d Male Wistar rats (n = 3).
e Male cynomolgus monkeys (n = 3).
were incorporated at the a, b, c or d positions of the hexanoic acid
‘‘head” region in the subsequent analogs. Analogs with substitution
at the a and b positions of the carboxylic acid (8–13) displayed sig-
nificantly improved half-lives, clearances and exposures. This
observation may be related to the impact of these substituents
on b-oxidation and/or glucuronide formation of the carboxylic acid,
which could be principle component(s) of the high clearance
observed for this series. However, the improvements in the PK
parameters for 8–13 came with diminished PPARd potency com-
pared to 7. One analog, the a,b-unsaturated compound 14, showed
only 6-fold loss in PPARd potency as compared to 7. The methyl
substituent on the double bond at a or b position was associated
with improved clearance and exposure values for compounds 15
and 16; however, these analogs also exhibited significantly lower
PPARd potency. Incorporating a methyl group in the c-position
= 37 ± 5 nMb

EC50 = 6100 nMb

B to A = 1.03E�04 (Efflux ratio 2.24)
A4, 2C9, 2C19, 2D6, 1A2
.8 h; CL = 8.4 mL/min/kg; Vss = 2.6 L/kg; AUC = 1980 ng*h/mL
4.3 h; Cmax = 11,100 ng/mL; AUC = 16,600 ng*h/mL; %F = 84
.5 h; Vss = 0.9 L/kg; CL = 7.2 mL/min/kg; AUC = 4650 ng*h/mL
2.5 h; Cmax = 3805 ng/mL; AUC = 12,500 ng*h/mL;%F = 82
.8 h; CL = 8 mL/min/kg; Vss = 1.3 L/kg; AUC = 6200 ng*h/mL
1.1 h: Cmax = 4190 ng/mL; AUC = 6050 ng*h/mL; %F = 29
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led to 17, which showed significantly reduced clearance and
improved exposure with a small loss in PPARd potency. Compound
18, which combined the c-methyl group and a c,d trans double
bond maintained PPARd activity and improving clearance and
exposure. The plasma exposure after intravenous dosing in mice
for all the compounds with EC50 under 100 nM are illustrated
graphically in Fig. 3.

Thus, compound 18 became a pivotal compound for the pro-
gram and was profiled in more detail as summarized in Table 2.
Compound 18 displayed good ADME profile and good exposure
in mice, rats and monkeys following oral dosing.

An X-ray crystal structure of 18 bound to the ligand binding
domain (LBD) of the hPPARd receptor was obtained with resolution
of 2.0 Å.17 Compound 18was tightly integrated with various amino
acids throughout the LBD, totaling a series of twenty contacts
with residues within 4 Å. As shown in Fig. 4, it formed H-bond
interactions of its carboxylic acid with side chains of His287,
His413, Thr253 and Tyr437, and proceeded to curl around helix 3
similar to the reported structure of 1.5 The benzamide carbonyl
was observed to be 34� out of the plane of the benzene ring. How-
ever, it appears that loss of conjugation with the benzene might
have been compensated for by a hydrogen bonding interaction of
the carbonyl oxygen with a water molecule that mediated interac-
tions between it and the carbonyl of Leu304. Additional hydropho-
bic contacts were seen with hydrophobic residues such as Leu294,
Phe291, Leu303, and Leu304. The hydrophobic contacts with
Val245, Val305, Val312, Phe316 and Leu317 were strong at the
entrance of the Y-shaped binding pocket near the furan moiety.

In summary, we successfully optimized the pharmacokinetic
properties of the benzamide carboxylic acid PPARd modulator 1,
which led to identification of compound 18. The in vivo efficacy,
gene regulation profile and safety studies for 18 are discussed in
an accompanying paper.18 The protein bound structure of 18
enabled further refinements of the structure and properties of 18,
which will be presented in due course.
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