

Inhibition of PARP-1 Attenuates Rat Renal Ischemia Reperfusion Injury

Christina Bracken¹, Effie Tozzo¹, Katelyn Pulito¹, Jeff Stanwix¹, Robert W Shine¹, Mahati Krishna², Nan Ji¹, Dominique Stickens¹ ¹Mitobridge, Inc. Cambridge, MA 02138; ²Syngene International, Bangalore, India

hours, Cmpd A sustains reduction of AKI biomarkers and maintains renal function.

novel and selective PARP1 inhibitor, to mitigate IR-induced AKI in rats. Cmpd A was IV injected at 0.1, 0.3, 1, 5 or 10 mg/kg beginning 4 hours post reperfusion. Plasma & urine were collected at 24h and 48h post reperfusion to assess AKI biomarkers, termination was at 48 hours to assess compound activity, NAD⁺ catabolism,

PARP-1 inhibition NAD⁺

mins results (not shown were obtained in kidney in the kidney cortex rats are inversely correlated

astellas

IR-AKI leads to an enhanced NAD⁺ consumption and an increase of its downstream metabolites Me-2-Py and Me-4-py (I). NAD⁺ and these breakdown products were measured by Mass-Spec in renal cortex samples. Cmpd A NAD^+ blocks catabolism leading to an increase of NAD⁺ with concomitant increased Me-2-py and Me-4py (**J**).

PARP-1 Inhibition Reduces Inflammation and Mitigates Vascular Dropout

Cmpd A 0.3 mg/kg

PARP-1 interacts with directly NF-κΒmediated response inflammatory stimuli¹. Consistent with PARP-1 KO mice showing reduced kidney expression of pro-inflammatory cytokines following IR-AKI², Cmpd A downregulates *II1b* and *II6* gene expression in our study (K). Additionally, Cmpd A dosedependently reduces the loss of *Vegfa* gene expression (L), suggesting a reduced vascular dropout following IR-AKI³.

Finally, mediated in part by inflammation and reduced dropout, Cmpd A vascular partially restores the normal tubular architecture shown by H&E staining (M).

Acknowledgements and References

The authors thank Dr. Bharat Lagu for providing Cmpd A and the Mitobridge and Astellas teams for helpful discussions. Please refer to FR-PO078 for a description of the IR-AKI model. References: ¹El-Hamoly et al., Mol. Med. 2014.; ²Zheng et al., Am J Physiolo Renal Physiol 2005.; ³Basile et al., Am J Physiol Renal Physiol. 2008.

